Abstract:With the development of the sixth-generation (6G) communication system, Channel State Information (CSI) plays a crucial role in improving network performance. Traditional Channel Charting (CC) methods map high-dimensional CSI data to low-dimensional spaces to help reveal the geometric structure of wireless channels. However, most existing CC methods focus on learning static geometric structures and ignore the dynamic nature of the channel over time, leading to instability and poor topological consistency of the channel charting in complex environments. To address this issue, this paper proposes a novel time-series channel charting approach based on the integration of Long Short-Term Memory (LSTM) networks and Auto encoders (AE) (LSTM-AE-CC). This method incorporates a temporal modeling mechanism into the traditional CC framework, capturing temporal dependencies in CSI using LSTM and learning continuous latent representations with AE. The proposed method ensures both geometric consistency of the channel and explicit modeling of the time-varying properties. Experimental results demonstrate that the proposed method outperforms traditional CC methods in various real-world communication scenarios, particularly in terms of channel charting stability, trajectory continuity, and long-term predictability.
Abstract:To meet the requirements for managing unauthorized UAVs in the low-altitude economy, a multi-modal UAV trajectory prediction method based on the fusion of LiDAR and millimeter-wave radar information is proposed. A deep fusion network for multi-modal UAV trajectory prediction, termed the Multi-Modal Deep Fusion Framework, is designed. The overall architecture consists of two modality-specific feature extraction networks and a bidirectional cross-attention fusion module, aiming to fully exploit the complementary information of LiDAR and radar point clouds in spatial geometric structure and dynamic reflection characteristics. In the feature extraction stage, the model employs independent but structurally identical feature encoders for LiDAR and radar. After feature extraction, the model enters the Bidirectional Cross-Attention Mechanism stage to achieve information complementarity and semantic alignment between the two modalities. To verify the effectiveness of the proposed model, the MMAUD dataset used in the CVPR 2024 UG2+ UAV Tracking and Pose-Estimation Challenge is adopted as the training and testing dataset. Experimental results show that the proposed multi-modal fusion model significantly improves trajectory prediction accuracy, achieving a 40% improvement compared to the baseline model. In addition, ablation experiments are conducted to demonstrate the effectiveness of different loss functions and post-processing strategies in improving model performance. The proposed model can effectively utilize multi-modal data and provides an efficient solution for unauthorized UAV trajectory prediction in the low-altitude economy.
Abstract:Multimodal remote sensing technology significantly enhances the understanding of surface semantics by integrating heterogeneous data such as optical images, Synthetic Aperture Radar (SAR), and Digital Surface Models (DSM). However, in practical applications, the missing of modality data (e.g., optical or DSM) is a common and severe challenge, which leads to performance decline in traditional multimodal fusion models. Existing methods for addressing missing modalities still face limitations, including feature collapse and overly generalized recovered features. To address these issues, we propose \textbf{STARS} (\textbf{S}hared-specific \textbf{T}ranslation and \textbf{A}lignment for missing-modality \textbf{R}emote \textbf{S}ensing), a robust semantic segmentation framework for incomplete multimodal inputs. STARS is built on two key designs. First, we introduce an asymmetric alignment mechanism with bidirectional translation and stop-gradient, which effectively prevents feature collapse and reduces sensitivity to hyperparameters. Second, we propose a Pixel-level Semantic sampling Alignment (PSA) strategy that combines class-balanced pixel sampling with cross-modality semantic alignment loss, to mitigate alignment failures caused by severe class imbalance and improve minority-class recognition.
Abstract:In safety-critical decision-making, the environment may evolve over time, and the learner adjusts its risk level accordingly. This work investigates risk-averse online optimization in dynamic environments with varying risk levels, employing Conditional Value-at-Risk (CVaR) as the risk measure. To capture the dynamics of the environment and risk levels, we employ the function variation metric and introduce a novel risk-level variation metric. Two information settings are considered: a first-order scenario, where the learner observes both function values and their gradients; and a zeroth-order scenario, where only function evaluations are available. For both cases, we develop risk-averse learning algorithms with a limited sampling budget and analyze their dynamic regret bounds in terms of function variation, risk-level variation, and the total number of samples. The regret analysis demonstrates the adaptability of the algorithms in non-stationary and risk-sensitive settings. Finally, numerical experiments are presented to demonstrate the efficacy of the methods.
Abstract:As an endangered language, Manchu presents unique challenges for speech synthesis, including severe data scarcity and strong phonological agglutination. This paper proposes ManchuTTS(Manchu Text to Speech), a novel approach tailored to Manchu's linguistic characteristics. To handle agglutination, this method designs a three-tier text representation (phoneme, syllable, prosodic) and a cross-modal hierarchical attention mechanism for multi-granular alignment. The synthesis model integrates deep convolutional networks with a flow-matching Transformer, enabling efficient, non-autoregressive generation. This method further introduce a hierarchical contrastive loss to guide structured acoustic-linguistic correspondence. To address low-resource constraints, This method construct the first Manchu TTS dataset and employ a data augmentation strategy. Experiments demonstrate that ManchuTTS attains a MOS of 4.52 using a 5.2-hour training subset derived from our full 6.24-hour annotated corpus, outperforming all baseline models by a notable margin. Ablations confirm hierarchical guidance improves agglutinative word pronunciation accuracy (AWPA) by 31% and prosodic naturalness by 27%.
Abstract:Multi-agent trajectory generation is a core problem for autonomous driving and intelligent transportation systems. However, efficiently modeling the dynamic interactions between numerous road users and infrastructures in complex scenes remains an open problem. Existing methods typically employ distance-based or fully connected dense graph structures to capture interaction information, which not only introduces a large number of redundant edges but also requires complex and heavily parameterized networks for encoding, thereby resulting in low training and inference efficiency, limiting scalability to large and complex traffic scenes. To overcome the limitations of existing methods, we propose SparScene, a sparse graph learning framework designed for efficient and scalable traffic scene representation. Instead of relying on distance thresholds, SparScene leverages the lane graph topology to construct structure-aware sparse connections between agents and lanes, enabling efficient yet informative scene graph representation. SparScene adopts a lightweight graph encoder that efficiently aggregates agent-map and agent-agent interactions, yielding compact scene representations with substantially improved efficiency and scalability. On the motion prediction benchmark of the Waymo Open Motion Dataset (WOMD), SparScene achieves competitive performance with remarkable efficiency. It generates trajectories for more than 200 agents in a scene within 5 ms and scales to more than 5,000 agents and 17,000 lanes with merely 54 ms of inference time with a GPU memory of 2.9 GB, highlighting its superior scalability for large-scale traffic scenes.
Abstract:We study a class of distributionally robust games where agents are allowed to heterogeneously choose their risk aversion with respect to distributional shifts of the uncertainty. In our formulation, heterogeneous Wasserstein ball constraints on each distribution are enforced through a penalty function leveraging a Lagrangian formulation. We then formulate the distributionally robust Nash equilibrium problem and show that under certain assumptions it is equivalent to a finite-dimensional variational inequality problem with a strongly monotone mapping. We then design an approximate Nash equilibrium seeking algorithm and prove convergence of the average regret to a quantity that diminishes with the number of iterations, thus learning the desired equilibrium up to an a priori specified accuracy. Numerical simulations corroborate our theoretical findings.
Abstract:Open-weight bio-foundation models present a dual-use dilemma. While holding great promise for accelerating scientific research and drug development, they could also enable bad actors to develop more deadly bioweapons. To mitigate the risk posed by these models, current approaches focus on filtering biohazardous data during pre-training. However, the effectiveness of such an approach remains unclear, particularly against determined actors who might fine-tune these models for malicious use. To address this gap, we propose \eval, a framework to evaluate the robustness of procedures that are intended to reduce the dual-use capabilities of bio-foundation models. \eval assesses models' virus understanding through three lenses, including sequence modeling, mutational effects prediction, and virulence prediction. Our results show that current filtering practices may not be particularly effective: Excluded knowledge can be rapidly recovered in some cases via fine-tuning, and exhibits broader generalizability in sequence modeling. Furthermore, dual-use signals may already reside in the pretrained representations, and can be elicited via simple linear probing. These findings highlight the challenges of data filtering as a standalone procedure, underscoring the need for further research into robust safety and security strategies for open-weight bio-foundation models.




Abstract:The performance of machine learning (ML) models critically depends on the quality and representativeness of the training data. In applications with multiple heterogeneous data generating sources, standard ML methods often learn spurious correlations that perform well on average but degrade performance for atypical or underrepresented groups. Prior work addresses this issue by optimizing the worst-group performance. However, these approaches typically assume that the underlying data distributions for each group can be accurately estimated using the training data, a condition that is frequently violated in noisy, non-stationary, and evolving environments. In this work, we propose a novel framework that relies on Wasserstein-based distributionally robust optimization (DRO) to account for the distributional uncertainty within each group, while simultaneously preserving the objective of improving the worst-group performance. We develop a gradient descent-ascent algorithm to solve the proposed DRO problem and provide convergence results. Finally, we validate the effectiveness of our method on real-world data.




Abstract:We stress test monitoring systems for detecting covert misbehavior in autonomous LLM agents (e.g., secretly sharing private information). To this end, we systematize a monitor red teaming (MRT) workflow that incorporates: (1) varying levels of agent and monitor situational awareness; (2) distinct adversarial strategies to evade the monitor, such as prompt injection; and (3) two datasets and environments -- SHADE-Arena for tool-calling agents and our new CUA-SHADE-Arena, which extends TheAgentCompany, for computer-use agents. We run MRT on existing LLM monitor scaffoldings, which orchestrate LLMs and parse agent trajectories, alongside a new hybrid hierarchical-sequential scaffolding proposed in this work. Our empirical results yield three key findings. First, agent awareness dominates monitor awareness: an agent's knowledge that it is being monitored substantially degrades the monitor's reliability. On the contrary, providing the monitor with more information about the agent is less helpful than expected. Second, monitor scaffolding matters more than monitor awareness: the hybrid scaffolding consistently outperforms baseline monitor scaffolding, and can enable weaker models to reliably monitor stronger agents -- a weak-to-strong scaling effect. Third, in a human-in-the-loop setting where humans discuss with the LLM monitor to get an updated judgment for the agent's behavior, targeted human oversight is most effective; escalating only pre-flagged cases to human reviewers improved the TPR by approximately 15% at FPR = 0.01. Our work establishes a standard workflow for MRT, highlighting the lack of adversarial robustness for LLMs and humans when monitoring and detecting agent misbehavior. We release code, data, and logs to spur further research.